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1 Load

suppressPackageStartupMessages( library(tidyverse) )
suppressPackageStartupMessages( library(knitr) )
suppressPackageStartupMessages( library(simaerep) )
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2 Introduction

Simulate adverse event reporting in clinical trials with the goal of detecting under-reporting sites.

Monitoring of Adverse Event (AE) reporting in clinical trials is important for patient safety. We use
bootstrap-based simulation to assign an AE under-reporting probability to each site in a clinical trial. The
method is inspired by the ‘infer’ R package and Allen Downey’s blog article: “There is only one test!”.

2.1 Publication

Koneswarakantha, B., Barmaz, Y., Ménard, T. et al. Follow-up on the Use of Advanced Analytics for Clinical
Quality Assurance: Bootstrap Resampling to Enhance Detection of Adverse Event Under-Reporting. Drug
Saf (2020). https://doi.org/10.1007/s40264-020-01011-5

2.2 Adverse Events

An adverse event (AE) is any untoward medical occurrence in a patient or clinical investigation subject
administered a pharmaceutical product and which does not necessarily have a causal relationship with this
treatment. It is important for patient safety that AEs are reported back to the sponsor. An important part
of quality monitoring is to detect clinical trial sites that are not propagating all of the AEs reported to them
by their patients to the sponsor. In a clinical trial patients follow a strict visiting schedule at which times
treatments are given and exams are being performed. Typically AEs get reported by a patient when they
are at an on-site visit at the clinic. So the total number of AEs reported by a site depends on the number
of patients enrolled at the site and the total number of visits.

2.3 Algorithm

In a nutshell we will perform the following steps.

1) Record visit_med75, number of patients that have reached visit_med75, mean cumulative AE count
at visit_med75 for a clinical trial site.

2) Create patient pool with all patients in study that have reached visit_med75 as determined in 1) and
their cumulative AE count at visit_med75.

3) Draw with replacement as many patients from 2) as determined in 1) and calculate the mean cumulative
AE count of the draw (figure 1b).

4) Repeat 3) 1000 times.
5) Calculate probability of obtaining mean cumulative AE count or lower as obtained in 1) based on

results of 4).
6) Repeat 1-5) for all sites in trial.
7) Adjust probabilities using the Benjamin Hochberg Procedure in order to correct alpha error.

2.4 Sample Data

2.4.1 Patient

Patient level AE data is characterized by the number of consecutive visits and the number of AEs that have
been reported each time. For the maximum consecutive visit we sample from a normal distribution and for
the AEs reported at each visit we sample from a poisson distribution.

Here we simulate the AEs generated by 3 patients

2

http://allendowney.blogspot.com/2011/05/there-is-only-one-test.html
https://doi.org/10.1007/s40264-020-01011-5
https://www.statisticshowto.com/benjamini-hochberg-procedure/


set.seed(1)

replicate(
3,
sim_test_data_patient(
.f_sample_max_visit = function() rnorm(1, mean = 20, sd = 4),
.f_sample_ae_per_visit = function(max_visit) rpois(max_visit, 0.5)

)
)

## [[1]]
## [1] 0 1 1 2 4 5 6 6 6 6 7 7 8 8 9 12 12
##
## [[2]]
## [1] 0 1 1 1 1 1 1 2 2 2 2 2 2 3 4 5 5 6 6 7 8 9 9
##
## [[3]]
## [1] 0 0 1 2 2 3 3 3 3 3 3 3 4 4 6 6 6 6 7 7

2.4.2 Study

In order to simulate patient data for an entire study we assume make the simplification that all sites have
the same number of patients. Further we specify a fraction of sites that is under-reporting AEs

df_visit <- sim_test_data_study(
n_pat = 120,
n_sites = 6,
frac_site_with_ur = 0.4,
ur_rate = 0.6,
max_visit_mean = 20,
max_visit_sd = 4,
ae_per_visit_mean = 0.5

)

df_visit %>%
head(10) %>%
kable()

patnum site_number is_ur max_visit_mean max_visit_sd ae_per_visit_mean visit n_ae
P000001 S0001 TRUE 20 4 0.2 1 0
P000001 S0001 TRUE 20 4 0.2 2 1
P000001 S0001 TRUE 20 4 0.2 3 1
P000001 S0001 TRUE 20 4 0.2 4 2
P000001 S0001 TRUE 20 4 0.2 5 2
P000001 S0001 TRUE 20 4 0.2 6 2
P000001 S0001 TRUE 20 4 0.2 7 2
P000001 S0001 TRUE 20 4 0.2 8 3
P000001 S0001 TRUE 20 4 0.2 9 4
P000001 S0001 TRUE 20 4 0.2 10 4
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df_visit %>%
select(site_number, is_ur) %>%
distinct() %>%
kable()

site_number is_ur
S0001 TRUE
S0002 TRUE
S0003 FALSE
S0004 FALSE
S0005 FALSE
S0006 FALSE

In our sample data 2 sites (S0001 and S0002) are under-reporting AEs

2.5 Specifying the Evaluation Point visit_med75

In an ongoing trial all patients will have a different number of consecutive visits. To find a cut-off visit to
normalize the data we specify a single evaluation point for a given site based on the number of visits of
the patient population. We take the median of the maximum visit of all the patients and multiply by 0.75
(visit_med75). For this we use site_aggr to aggregate the simulated visit level data to site level.

df_visit$study_id <- "A"
df_site <- site_aggr(df_visit)

df_site %>%
kable()

study_id site_number n_patients visit_med75 n_pat_with_med75 mean_ae_site_med75
A S0001 20 15 17 3.000000
A S0002 20 14 17 3.352941
A S0003 20 16 16 8.125000
A S0004 20 14 17 7.000000
A S0005 20 15 18 6.888889
A S0006 20 15 20 7.850000

plot_visit_med75(df_visit, df_site, study_id_str = "A", n_site = 6)
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purple line: mean site ae of patients with visit_med75
grey line: patient included

black dashed line: patient excluded
horizontal dotted line marks visit_med75

Using the visit_med75 will drop a few patients (dashed lines) but will by definition at least include 50%
of all patients favoring patients that have higher number of visits. By looking at the mean ae develop-
ment (purple line) we can already easily spot the two under-reporting sites. Same goes for looking at the
mean_ae_site_med75 column in df_site. Next we will use bootstrap simulations to determine the proba-
bility for obtaining each mean ae value or lower at visit_med75 by chance.

2.6 Bootstrap Simulations

2.6.1 Advantage Over Classic Statistical Tests

We could use a classical parametric test and calculate the probability with which we can reject the NULL
hypothesis for the AE counts that we observe at the visit_med75.

As we sample the AEs from a poisson distribution the R implementation of the poisson.test would be
appropriate.

But there are four major problems that we often encounter when we try to describe real life count data with
the poisson distribution which is only described by a single parameter:

• over and underdispersion
• skewness (long right tail)
• inflated zeros
• variance mean relationship might not be fixed

(see Distribution for Modelling Location Scale and Shape 5.1.2)
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The true distribution of the AE counts will vary from study to study with the degree of the influence of
these 4 problems being unknown unless thoroughly investigated.

With the non-parametric approach that we propose we do not need to worry about these statistical assump-
tions. Since the distribution of the AE count from the simulated patient pool we draw from will be very
close to the unknown true distribution of the underlying AE generating process.

2.6.2 Disadvantages Over Classic Statistical Tests

• Upper Limit for Uncompliant Sites. We simulate an underlying compliant patient population
using the data we are given. If the fraction of uncompliant examples becomes too high, detection rates
will decrease. We find that detection rates start decreasing with 30-50% of under-reporting sites and
are not usable anymore if a majority > 50% of all sites are under-reporting see article on usability
limits.

• Lower Probability Limit The number of repeats determines the smallest probability greater than
zero, for example a for r=1000 the smallest value greater than zero is 0.001

• Computationally Expensive

2.6.3 Methodology

How likely is it to get a mean AE value that is equal or lower to what we observe at site C with the same
number of patients?

For illustration purposes we start to simulate 10 hypothetical patient groups for site C by drawing (with
replacement) from all patients in the study marking those for which we have obtained an equal or lower
mean AE value than initially observed (middle).

Instead of 10 times we simulate 1000 times and count how many times we have observed an equal or lower
mean AE value than initially observed and convert it to a percentage (right).

To illustrate the effect of under-reporting we repeat the same process after having removed 2 AEs per patient
from site C. We see how the probability for obtaining an equal or lower mean AE value than initially observed
decreases (bottom).

plot_sim_examples(size_dot = 4, size_raster_label = 10)
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2.6.4 Application

We can run the above described simulation and as a benchmark also perform a poisson test.

df_sim_sites <- sim_sites(df_site, df_visit, r = 1000, poisson_test = TRUE)

df_sim_sites %>%
kable()

study_id site_number visit_med75 mean_ae_site_med75mean_ae_study_med75 pval prob_low
A S0001 15 3.000000 6.712644 0.0e+00 0
A S0002 14 3.352941 6.021739 7.5e-06 0
A S0003 16 8.125000 6.270588 1.0e+00 1
A S0004 14 7.000000 5.347826 1.0e+00 1
A S0005 15 6.888889 5.941860 1.0e+00 1
A S0006 15 7.850000 5.690476 1.0e+00 1

We find that the probability of getting a mean ae at visit_med75 for sites S0001 and S0002 is 0 or near zero.
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2.7 Alpha Error Correction

Our simulated test data set consists of just 6 sites. However, it is not uncommon for 100 sites or more to
participate in the same clinical trial. This would mean that we need to perform 100 statistical tests, and
applying a 5% significance threshold would lead to on average of 5 False Positives (FP). We therefore need to
adjust the calculated p-values and bootstrapped probabilities using stats::p.adjust(p, method = "BH"),
which applies the Benjamin Hochberg Procedure. eval_sites() uses the the inverted adjusted values to
calculates the final bootstrapped AE under-reporting probability (prob_low_prob_ur) and includes the
poisson test derived under-reporting probability as a reference (pval_prob_ur).

df_eval <- eval_sites(df_sim_sites, method = "BH")

df_eval %>%
select(- visit_med75, - mean_ae_site_med75, - mean_ae_study_med75) %>%
kable()

study_id site_number pval prob_low pval_adj pval_prob_ur prob_low_adj prob_low_prob_ur
A S0001 0.0e+00 0 0.00e+00 1.0000000 0 1
A S0002 7.5e-06 0 2.24e-05 0.9999776 0 1
A S0003 1.0e+00 1 1.00e+00 0.0000000 1 0
A S0004 1.0e+00 1 1.00e+00 0.0000000 1 0
A S0005 1.0e+00 1 1.00e+00 0.0000000 1 0
A S0006 1.0e+00 1 1.00e+00 0.0000000 1 0

2.8 Plot Results

plot_study will plot mean ae development of all sites and visit level data for each flagged site with an AE
under-reporting threshold of 95%.

plot_study(df_visit, df_site, df_eval, study = "A")
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